

Elaborated configuration-frequency-analysis

e-KFA

Algorythm after a hectographed contribution in a seminary lesson on socia
cognitions and behaviour at psychological institute, university of the Sa
Saarbrücken, summer-semester, 1975
by Kurt-Wihelm Laufs, ©
updated an English version 2014-11-0

At a first glance, e-KFA could remind Cochran'

 Q-sort, yet is notKFA had been formulated by Krauth \& Liener about 1971 to typologize and to analyse by chi square and binominal distribution different LSD syndromes (Lysergsäure-Diäthylamid-Syndrom Leuner Syndrom)
Citics on KFA (Konfiguration-Frequenz Analyse) had followed lexically (Clauss, G. \& al., 1976: Wörterbuch der Psychologie. VEB Verlag Enzyklopädie, Leipzig. Pahl-Rugenstein Köln, 1976), and describe the problem to smalle and/or larger number of checked persons thar about $\mathrm{N}=40$.
This numerical methodical KFA inherent problem really can be avoided, when instead o absolute numeri one got over to percentages, sc one could also analyse rather approprietly, both smaller samples than $\mathrm{N}=40$, or larger samples than $\mathrm{N}=40$
Author's KFA elaboration shows examples, how to apply e-KFA in psychology, and psychologica field research, and also as a practitioner' nethod, without any electrical computer, just by hand calculations to combinations of hypothese n any social and psychological field.
Do it yourself !
$1^{\text {st }}$ you define your most possible observationally categories or terms, according to valid theories or objective items.
you take the amount (number) of categories to form plus-minus (yes/no answers or signatures as plus/minus) combinatoric configurationmatrices. A two configuration-matrix (KF) makes four possible configurative combinations: (++; +-; -+; --), a three KF shows eight configurative combinations (+++; ++-; +-+; +--;
$++;-+-;--+;---)$ etc. Above algorythm sheed shows four configurations with sixteen possible yes or no signations, combinatorically, etc
Why now KFA elaborated, behalf to calculate in percentages? When 4 -configurations were by split half (bi-partation) analysed after chi-square, only significant values in row after split half iteration were valid, thus a four-configuration must be equally significant after chi-square in it's both parts divided in two configurations. The lowest significance in row determines here the significance of all a four-configuration row
Percentage calculation as appropriate to social and psychological data (always in mind that "nasty" scaling problem and of objectivity), claims percentages for numbers of observed data and to expecting values of a distribution as inference model.
When social data or psychological data in practice or social fields occur, that phantasm of normal or binominal distributions can even more appropriate and more rapidly be calculated by inference of equal distribution. Thus: 100% of postulated expecting inference (e) be to twoconfigurational percentage number observed (o) data, as 100% by 4 (number of possible combinations) $=25 \%$ expectation value (e); for 3 -configuration's observed percentages (o) and
t's possible combinations 100% by $8=12,5 \%$ (e); four configuration's e $=6,25 \%$; (100% : 16) When one will look for α errors of significancy in one's statistical tabellas on chi square, degree of freedom (df; FG) depend here on number of configurations: two-configurations make $2-1$ 1 df ; three-config. show $3-1=2 \mathrm{df}$; and four configurative calculations make subtract one rom four and show three degrees of freedom at t's tabella value for significance.

> This appropriate and rather quick method to calculate shows very satisfying approximations o much more complicated factor analyses and also can be applied to control rapidly facto analyses by hand calculation without electronic computers, and also efficiently can be applied in social fields, on park banches, and in practice, to bundle data and test it's significance, withou caling and interpretation problems those problems typical to factor analysis communality and rotation. Nevertheless one could bundle e-KFA results again by a factor analysis.

> To rapid e-KFA percentages can be done intercorrelations to it's results in rows (types/factors and columns (factorial categories/items), and an arithmetical (or geometrical) mean coefficient can describe consistency (also as a communality) coefficient.

Author and Copyright, © 1975 ff : Kurt-Wilhelm Lauts, D.P

 3996 Bobitz, 2014-11-02, 2014-11-03, 2014-11-05